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A B S T R A C T

In this series of papers we investigate the orbital structure of three-dimensional (3D) models

representing barred galaxies. In the present introductory paper we use a fiducial case to

describe all families of periodic orbits that may play a role in the morphology of three-

dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just

the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families

bifurcating from x1. Besides the main tree we have also found another group of families of

lesser importance around the radial 3:1 resonance. The families of this group bifurcate from

x1 and influence the dynamics of the system only locally. We also find that 3D orbits

elongated along the bar minor axis can be formed by bifurcations of the planar x2 family.

They can support 3D bar-like structures along the minor axis of the main bar. Banana-like

orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The

importance of the 3D x1-tree families at the outer parts of the bar depends critically on

whether they are introduced in the system as bifurcations in z or in _z.
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1 I N T R O D U C T I O N

A thorough understanding of the orbital structure in a barred

galaxy potential can provide useful insights into the stellar

dynamics of barred galaxies and therefore to the dynamical

evolution of these objects, as reviewed, for example, by

Athanassoula (1984), Contopoulos & Grosbøl (1989), Sellwood

& Wilkinson (1993) and Pfenniger (1996). Stable periodic orbits

trap around them regular orbits and thus constitute the backbone of

galaxy structure (Athanassoula et al. 1983). Thus the appearance

of a given morphological feature can often be associated with

the properties of one of the main families of periodic orbits. In the

1990s, starting with Athanassoula (1992a,b), many papers have

pointed out that the gaseous response to steady barred potentials is,

to a large degree, determined by the morphology of the periodic

orbits in the corresponding stellar case. Thus, orbital and gaseous

dynamics are linked. This has provided added incentive for studies

of the morphology and the stability of periodic orbits in

Hamiltonian systems representing disc galaxies.

Orbital theory has often provided useful information on the

structure of galactic bars. Thus, it is now understood that a bar is

basically caused by regular orbits trapped around the so-called ‘x1’

periodic orbits, which are elongated along the bar major axis

(Contopoulos & Grosbøl 1989). Such orbits do not extend beyond

the corotation resonance, and in many cases no suitable elongated

orbits can be found beyond the 4:1 resonance. This led orbital

theory to predict that bars should end at or before corotation

(Contopoulos 1980). Orbital theory was also able to predict – at

the right distance from the centre – the loops of the near-infrared

isophotes (see the case of NGC 4314 in Patsis, Athanassoula &

Quillen 1997). Yet not all important morphological features have

been explained so far with the help of periodic orbits. Thus orbital

theory has difficulties in explaining the boxy isophotes surrounding

the bars of, mainly, early-type barred galaxies (Athanassoula 1996;

Patsis et al. 1997). Another point still under discussion is the

morphology of the peanut-shaped bulges observed in edge-on disc

galaxies. They are considered by many authors as revealing the

presence of a bar, and to be associated with the 2:1 vertical

resonance. It is not clear, however, which families can make this

vertical structure. Could a bar without a vertical 2:1 resonance be

boxy or peanut-shaped when viewed edge-on? Could we have

stellar rings out of the equatorial plane at the Inner Lindblad

Resonance (ILR) region? Furthermore, the detailed dynamics of

the corotation region and the differences in the vertical structure

between fast and slow bars remain open issues.

In this series of papers we use orbital theory to address the

above questions. This is a first step towards understanding both the

orbital behaviour in N-body models and the responses of gaseous

discs to potentials derived from near-infrared observations. The

differences between our model and the well studied correspondingPE-mail: hskokos@cc.uoa.gr
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two-dimensional (2D) case of the Ferrers bar (Athanassoula 1992a)

reflect the changes arising from the inclusion of a third dimension.

In separate papers we address the question of the morphology of

the peanut-shaped bulges (Patsis, Skokos & Athanassoula 2002 –

Paper III) and of the boxy isophotes of bars seen face-on (Patsis,

Skokos & Athanassoula, in preparation – Paper IV).

Our first goal is to make a thorough study of the orbital structure

in three-dimensional (3D) barred potentials, to classify the

important families, and to follow their morphological evolution

as a function of the Jacobi integral. We start with a fiducial case.

Many of the families we find in this model have been mentioned

previously (e.g. Heisler, Merritt & Schwarzschild 1982; Pfenniger

1984, 1985b; Martinet & de Zeeuw 1988; Hasan, Pfenniger &

Norman 1993). However, other, equally important families, have

not yet been studied.

Studying the orbital stability in a Hamiltonian system

approximating the dynamics of a barred galaxy we obtain the

periodic orbits that could be used as building blocks for a density

model. The general rule is to look for stable periodic orbits, since

they trap around them the regular orbits. Not all of them, however,

are equally important. The isodensities of the model we use show

us the topological limits within which we should look for the

significant orbits. Stable representatives of families of periodic

orbits that do not support the imposed morphology, i.e. that of a bar

embedded in an axisymmetric disc with a central bulge, should be

considered as less important. As an example, in 2D models, let us

mention the case of the retrograde family x4, which is stable over a

very large interval of energies (Athanassoula et al. 1983). This

family, however, should obtain a minimum weight when one tries

to construct a self-consistent model using the methods of

Schwarzschild (1979) or Contopoulos & Grosbøl (1988). In a

model of a 3D disc galaxy, besides the counter-rotating x4 family

on the equatorial plane, one also has to filter out stable orbits with

large jzj, i.e. orbits with large mean vertical deviations, since these

orbits do not contribute much to the density of the barred galaxy.

This paper is organized as follows. In Section 2 we review

briefly the parts of orbital theory that are necessary for under-

standing this paper. In particular, we explain the use of charac-

teristic and stability diagrams in following the dynamical evolution

of a family of periodic orbits. We also describe the various types of

instabilities encountered in 3D Hamiltonian systems and we

introduce the nomenclature of the main families. The latter is

necessary since a number of the families presented here have not

been discussed previously and thus need to be incorporated in a

unique nomenclature scheme. In Section 3 we introduce our 3D

model and the orbital structure in a 2D counterpart. In Section 4 we

present the main families, x1, x2 and x3, and their bifurcations. In

Section 5 we describe the orbits around L4 (or L5) and around L1

(or L2), and families outside corotation. We conclude in Section 6.

2 A S H O RT I N T R O D U C T I O N T O P E R I O D I C

O R B I T S I N T H E P R E S E N T C O N T E X T

2.1 Periodic orbits and their stability

In this section we will briefly review some parts of orbital theory

that are necessary for the understanding of this paper. A clear,

easily readable introduction to the subject has been given by

Sellwood & Wilkinson (1993). We also refer the reader to the

pioneering works of Pfenniger (1984, 1985b) and Contopoulos &

Magnenat (1985).

We study the stability of simple-periodic orbits in a barred

potential in Cartesian coordinates. The 3D bar is rotating around its

short z-axis. The x-axis is the intermediate and the y-axis is the long

one. The system is rotating with an angular speed Vb and the

Hamiltonian governing the motion of a test particle can be written

in the form

H ¼
1

2
ðp2

x þ p2
y þ p2

z Þ þ Vðx; y; zÞ 2 Vbðxpy 2 ypxÞ; ð1Þ

where px, py and pz are the canonically conjugate momenta.

Hereafter, we will denote the numerical value of the Hamiltonian

by Ej and refer to it as the Jacobi constant or, more loosely, as the

‘energy’. The corresponding equations of motion are

_x ¼ px þVby; _y ¼ py 2 Vbx; _z ¼ pz

_px ¼ 2
›V

›x
þVbpy; _py ¼ 2

›V

›y
2 Vbpx; _pz ¼ 2

›V

›z
:

ð2Þ

The space of section in the case of a 3D system is four

dimensional (4D). The equations of motion are solved for a given

value of the Hamiltonian, starting with initial conditions

ðx0; _x0; z0; _z0Þ in the plane y ¼ 0, for _y . 0. The next intersection

with the y ¼ 0 plane with _y . 0 is found and the exact initial

conditions for the periodic orbit are calculated using a Newton

iterative method. A periodic orbit is found when the initial and final

coordinates coincide with an accuracy of at least 10210. The

integration scheme used was a fourth-order Runge–Kutta scheme.

The estimation of the linear stability of a periodic orbit is based

on the theory of variational equations. We first consider small

deviations from its initial conditions, and then integrate the orbit

again to the next upward intersection. In this way a transformation

T : R4 ! R4 is established, which relates the initial with the final

point. The relation of the final deviations of this neighbouring orbit

from the periodic one, with the initially introduced deviations can

be written in vector form as j ¼ Mj0. Here j is the final deviation,

j0 is the initial deviation and M is a 4 £ 4 matrix, called the

monodromy matrix. It can be shown that the characteristic

equation is written in the form l 4 þ al 3 þ bl 2 þ alþ 1 ¼ 0. Its

solutions ðli; i ¼ 1; 2; 3; 4Þ obey the relations l1l2 ¼ 1 and l3l4 ¼

1 and for each pair we can write

li; 1/li ¼
1

2
½2bi ^ ðb2

i 2 4Þ1=2�; ð3Þ

where bi ¼ 1=2ða^ D1=2Þ and D ¼ a 2 2 4ðb 2 2Þ.

The quantities b1 and b2 are called the stability indices. If D . 0,

jb1j , 2 and jb2j , 2, the four eigenvalues are on the unit circle

and the periodic orbit is called ‘stable’. If D . 0, and jb1j . 2,

jb2j , 2, or jb2j . 2, jb1j , 2, two eigenvalues are on the real axis

and two on the unit circle, and the periodic orbit is called ‘simple

unstable’. If D . 0, jb1j . 2 and jb2j . 2, all four eigenvalues are

on the real axis, and the periodic orbit is called ‘double unstable’.

Finally, D , 0 means that all four eigenvalues are complex

numbers but off the unit circle. The orbit is characterized then as

‘complex unstable’ (Contopoulos & Magnenat 1985; Heggie 1985;

Pfenniger 1985a,b). We use the symbols S, U, D and D to refer to

stable, simple unstable, double unstable and complex unstable

periodic orbits, respectively. For a general discussion of the kinds

of instability encountered in Hamiltonian systems of N degrees of

freedom the reader may refer to Skokos (2001).

The method described above was presented initially by

Broucke (1969) and Hadjidemetriou (1975), and has been used

in studies of the stability of periodic orbits in systems of three
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degrees of freedom. The reader is referred to Pfenniger (1984)

and Contopoulos & Magnenat (1985) for an extended

description.

A diagram that describes the stability of a family of periodic

orbits in a given potential when one of the parameters of the system

varies (e.g. the numerical value of the Hamiltonian Ej), while all

other parameters remain constant, is called a ‘stability diagram’

(Contopoulos & Barbanis 1985; Contopoulos & Magnenat 1985).

With the help of such a diagram one is able to follow the evolution

of the stability indices b1 and b2, and the transitions from stability

to instability or from one to another kind of instability. We will

loosely refer to the b ¼ 2 and 22 lines on a stability diagram as the

b ¼ 2 and 22 axes. The S ! U transitions, when one of the

stability indices has an intersection with the b ¼ 22 axis, or is

tangent to it, are of special importance for the dynamics of a

system. In this case a new stable family is generated by bifurcation

of the initial one and has the same multiplicity as the parent family.

This means that the periodic orbits of the bifurcating family have,

before closing, as many intersections with the plane y ¼ 0, for

_y . 0, as the orbits of the parent family. The new family may play

an important role in the dynamics of the system. S ! U transitions

after the intersection of a stability curve with the b ¼ 2 axis, or

tangency of a stability curve with the b ¼ 2 axis, also generate a

stable family but are accompanied by period doubling. This means

that the number of intersections with the plane y ¼ 0 (always with

_y . 0Þ, needed for the periodic orbits to close, is double the

corresponding number of the parent family. Since the most

important families we examine here are simple periodic, i.e. of

multiplicity 1, intersections or tangencies of their stability indices

with the b ¼ 2 axis introduce in the system families of orbits with

multiplicity 2. U ! D and D ! D transitions do not bring new

stable families in the system and thus, in principle, are only of

theoretical interest. As we will see, however, the evolution of a

family that is found to be initially unstable may be very

important for the dynamics of our model. The family could

simply become stable in another energy interval, or it may play a

major role in a collision of bifurcations, an inverse bifurcation or

other dynamical phenomena (Contopoulos 1986). Finally, in the

case S ! D we have in general no bifurcating families of periodic

orbits.

Another very useful diagram is the ‘characteristic’ diagram

(Contopoulos & Mertzanides 1977). It gives the x coordinate of the

initial conditions of the periodic orbits of a family as a function of

their Jacobi constant Ej. In the case of orbits lying on the equatorial

plane and starting perpendicular to the x-axis, we need only one

initial condition, x, in order to specify a periodic orbit on the

characteristic diagram. Thus, for such orbits this diagram gives the

complete information concerning the interrelations of the initial

conditions in a tree of families of periodic orbits and their

bifurcations. However, even for orbits completely on the

equatorial plane, but not starting perpendicular to the x-axis

we need to give initial conditions as position–velocity pairs (x, ẋ)

and the characteristic diagram is three dimensional (Ej, x, ẋ). In

the general case of orbits in a 3D system, one has a set of four

initial conditions and the characteristic diagram is five

dimensional. The representation of such a diagram is difficult,

but when necessary we will give just the (Ej, x) projection. (Ej, x)

diagrams that can be compared with the corresponding 2D

models will always be given. In all characteristic diagrams the

region to which the orbits are confined is bounded by a curve

known as the zero-velocity curve (ZVC), since the velocity on it

becomes zero.

2.2 The nomenclature of the main families

Our orbital study is more extended than previous ones and thus

brings in new families of orbits that have not been studied so far.

We were thus brought to introduce a new nomenclature system, an

extension of the system of Contopoulos & Grosbøl (1989), which

covers all the new types of orbits.

For the main 2D families of simple periodic orbits the

nomenclature in the present paper follows the standard notation of

Contopoulos & Grosbøl (1989). We thus have the x1 family, where

orbits are elongated along the bar and which is the main family in

the case of barred potentials, families x2 and x3, the orbits of which

are elongated perpendicular to the bar, and the retrograde family

x4. 2D families bifurcated from x1 at the 3:1 resonance region on

the equatorial plane are denoted by t1, t2, . . ., for consistency with

the names used in Patsis et al. (1997). 2D families bifurcated at the

4:1 resonance region on the equatorial plane are called q1, q2, q3,

. . . . Planar orbits related with the 1:1 radial resonance will be

called o1, o2, . . . . They are encountered only in some models. The

fiducial case presented in the present paper is not one of them.

Further planar families appear beyond the x1 family, at the gaps

of the even resonances 4:1, 6:1, 8:1 etc. They are given the names

‘f’, ‘s’, ‘e’, . . ., respectively. These families, not directly related to

the morphological problems we address in this series, will be

discussed elsewhere.

We name the 3D families bifurcated from the basic family x1 at

the vertical resonances as x1vn, where n denotes the order of their

appearance in our fiducial model A (see Section 4). This is a

convenient model to use for our nomenclature, since there are

families of 3D orbits associated with all basic vertical resonances.

So x1v1 is the one bifurcated at the first S ! U transition, which

happens at the vertical 2:1 resonance region, x1v2 is the one

bifurcated at the U ! S transition (second stability transition of the

model also at the vertical 2:1 resonance region), x1v3 is the one

bifurcated at the S ! U transition at the vertical 3:1 resonance and

so on. Further bifurcations of these x1vn families are indicated

with an ‘.n’ (for the nth bifurcation) attached to the name of the

parent family; i.e. the first bifurcation of x1v1 will be x1v1.1, the

second x1v1.2, etc. Further bifurcations of these families will be

indicated by further ‘.n’ attached to the name of the parent family.

Thus x1v1.1.1 is the first bifurcation of x1v1.1. The naming system

is thus extendible at will.

In general, at each vertical resonance we have two bifurcating

families introduced in the system. The number of oscillations along

the rotation axis z corresponds to the vertical resonance at which

the family is born. For example, families x1v1 and x1v2, which are

bifurcated at the vertical 2:1 resonance region, have orbits with two

oscillations along the z-axis. This determines only partially their

morphology, since the bifurcating family can be introduced either

in the z or the _z coordinate of the initial conditions. If we know the

number of oscillations of a family along each axis and also whether

it is a bifurcation in z or _z; then we know its morphology. Families

with similar morphology are similar in their corresponding (x, y),

(x, z) and (y, z) projections. In the fiducial case, where each vertical

resonance is associated with two bifurcating families, the families

x1vð2n 2 3Þ and x1vð2n 2 2Þ are born at the n:1 resonance.

We note, however, that the first vertical bifurcation is not in

every model the x1v1 family, as in the fiducial case. In other

models (Skokos, Patsis & Athanassoula 2002 – Paper II) it can

happen that the first 3D bifurcation of x1 is not related to the 2:1

vertical resonance, but with a different one. In such a model the

first vertical bifurcation of x1 will have the same name as the
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family of the fiducial model that has similar morphology.

Equivalently, it will have the same name as the family of the

fiducial model that is introduced in the same n:1 resonance and in

the same (z or _zÞ coordinate. In this way we make sure that families

with similar morphologies share the same name in the various

models. In addition, if for some reason we have more than one

vertical bifurcation of x1 associated with a vertical resonance, we

introduce appropriate primes in our nomenclature. For example, in

a model with two vertical 4:1 resonances we will have the pairs of

bifurcating families x1v5, x1v6 and x1v50, x1v60. By keeping the

basic name of the family similar for all families associated with the

same vertical resonance, we again underline the dependence of

the name on the encountered morphology. Nevertheless, the basic

names are given in the fiducial model, which thus becomes a

reference case for all of our work.

We use the same nomenclature not only for the bifurcations of

the basic family x1, but in general for the vertical bifurcations of

every 2D family. Their name consists of the name of the parent

family, followed by ‘vn’, where n indicates its nth vertical

bifurcation. Also the names of the bifurcations of the bifurcating

families are characterized by the addition of ‘.1’, ‘.2’, . . . at the end

of the name of the 3D family, as described above for the

corresponding families associated with x1.

We will use the same system in order to also name radially

bifurcating families. In general, a radial bifurcation will be

named as ‘wrn’, where ‘w’ is the name of the parent family. For

example, the nth radial bifurcation of family f will be ‘frn’ (fr1,

fr2, . . .).

Let us now turn to orbits related with the axis of rotation. The

family on the axis of rotation is called the ‘z-axis’ family (Martinet

& de Zeeuw 1988). Its two first bifurcations are introduced at the

first S ! U transition and the first U ! S transition, respectively,

and they are the ‘sao’ and ‘uao’ orbits of Heisler et al. (1982). This

nomenclature, however, does not lend itself to extension that can

include what Poincaré (1899) called the ‘deuxième genre’ families

(cf. Polymilis, Servizi & Skokos 1997), which can play an

important role in some Ferrers bars (Paper II), so we will not adopt

it here for other families related to the z-axis orbits. In practice

‘deuxième genre’ orbits are found on the stability diagrams as

bifurcations of the parent family when this family is considered to

be of higher multiplicity, i.e. if its orbits are repeated many times.

Thus, the z-axis family, when its orbits are repeated twice, is called

z2. Bifurcations of the z2 family are called z2.1, z2.2, etc. The

same rule applies for the bifurcations of z3, i.e. for the bifurcations

of the z-axis if this is described three times. We then have z3.1, z3.2

and so on. These bifurcating families always come in pairs. A

further index (s or u) is attached to their names and is related to

their stability.

Around the Lagrangian points L4,5 we have the long-period

banana-like orbits, which form a tree of families, and the short-

period orbits. For the latter we keep the notation (spo) of

Contopoulos & Grosbøl (1989). For the banana-like orbits we use

the notation ban1, ban2, . . ., bann in the 2D cases. Their 2D

bifurcations are the families bann.1, bann.2, . . .. and their 3D

bifurcations are the families bannv1, bannv2, . . .. 3D banana-like

orbits not related with a 2D one are named banvn.

A 2D family found around the unstable Lagrangian points L1,2 is

called ‘1.

Throughout the papers we also give the names used by other

authors for families that have been studied previously. However,

since our study is more extended, there are several families

mentioned here for the first time.

3 T H E M O D E L

3.1 The 3D potential

For our calculations we used a 3D potential, which consists of a

Miyamoto disc, a Plummer bulge and a Ferrers bar. Pfenniger and

collaborators have made extensive use of this potential for orbital

calculations (Pfenniger 1984, 1985a,b, 1987, 1990; Martinet &

Pfenniger 1987; Hasan et al. 1993; Olle & Pfenniger 1998). Our

work is, in many ways, more extended. We make a much more

extensive search for periodic families and, furthermore, we follow

their stability. The latter allows us to find a number of ‘new’

families, which show interesting morphological characteristics.

Furthermore, we vary the parameters of the model so that we are

able to make comparisons between fast and slow rotating bars and

between strong and weak bars (Paper II). Finally, we focus our

work more on tracing the orbital behaviour that could support

observed morphological features and less on studying in depth

qualitatively the dynamical phenomena that take place in these

kinds of Hamiltonian systems.

Our general model consists of three components. The disc is

represented by a Miyamoto disc (Miyamoto & Nagai 1975), the

potential of which reads

FD ¼ 2
GMDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 2 þ y 2 þ ðA þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B 2 þ z 2

p
Þ2

q ; ð4Þ

where MD is the total mass of the disc, A and B are the horizontal

and vertical scalelengths, and G is the gravitational constant. The

bulge is modelled by a Plummer sphere with the potential

FS ¼ 2
GMSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x 2 þ y 2 þ z 2 þ e2
s

p ; ð5Þ

where es is the scalelength of the bulge and MS is its total mass. The

third component of the potential is a triaxial Ferrers bar, the density

r(x) of which is

rðxÞ ¼

105MB

32pabc
ð1 2 m 2Þ2 for m % 1

0 for m . 1;

8><>: ð6Þ

where

m 2 ¼
y 2

a 2
þ

x 2

b 2
þ

z 2

c 2
; a . b . c; ð7Þ

with a, b and c being the semi-axes and MB the mass of the bar

component. The corresponding potential FB and the forces are

given in Pfenniger (1984).1 They are in a closed form, well suited

for numerical treatment. For the Miyamoto disc we use A ¼ 3 and

B ¼ 1, and for the axes of the Ferrers bar we set

Table 1. The parameters of our fiducial model A1. G is the gravitational
constant, MD, MB and MS are the masses of the disc, the bar and the bulge,
respectively, es is the scalelength of the bulge, Vb is the pattern speed of the
bar, Ej(r-IILR) and Ej(v-ILR) are the values of the Jacobi constant for the
radial and vertical 2:1 resonances and Rc is the corotation radius.

GMD GMB GMS es Vb Ej(r-IILR) Ej(v-ILR) Rc

0.82 0.1 0.08 0.4 0.054 20.44 20.36 6.13

1 We made use of the offer of Olle & Pfenniger (1998) for free access to the

electronic version of the potential and forces routines.
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a : b : c ¼ 6 : 1:5 : 0:6, as in Pfenniger (1984). We note that these

axial ratios are near the standard values given by Kormendy

(1982). The masses of the three components satisfy

GðMD þ MS þ MBÞ ¼ 1. The length unit is taken as 1 kpc, the

time unit as 1 Myr and the mass unit as 2 £ 1011 M(.

In Table 1 we give the parameters of our model. We give it the

name A1, and it will be one of the models that will be used in our

comparative study in Paper II.

3.2 The 2D Ferrers bar

The general orbital structure in potentials including a 2D Ferrers

bar can be found in Athanassoula (1992a). The dynamics are

dominated by the presence of the x1 family, which is in general

stable. It is characterized by the presence of a narrow instability zone

at the 3:1 resonance and a gap at the 4:1 region, which is generally

of type 2 (Contopoulos & Grosbøl 1989). The S ! U ! S

transition at the 3:1 region introduces in the system a couple of

simple periodic families of orbits, the importance of which remains

local. Beyond the type 2 gap and above the local maximum of the

characteristic of x1 at the 4:1 resonance (fig. 2 in Contopoulos &

Grosbøl 1989) one can find a large number of families squeezed

close to the zero-velocity curve. Finally, the families x2 and x3

generally exist for a large energy range and their characteristics form

a single bubble. As is known, x2 is generally stable and x3 unstable.

In the next sections we describe the orbital behaviour in a 3D

case where both radial and vertical 2:1 resonances exist. We will

thus find the differences introduced in the morphology and stability

of the families of periodic orbits by the inclusion of the third

dimension. We will also examine how the 3D families of periodic

orbits support the bar.

4 T H E X 1 - FA M I LY A N D I T S B I F U R C AT I O N S

4.1 A general description

In contrast with the 2D models, where a single family, the x1

family, provides the building blocks for the bar, in 3D models we

have a tree of families consisting of 2D and 3D families related to

the planar x1 orbits. In Table 2 we summarize the properties of

these families. We list their name, the value of the energy at which

they are born ðE*
j Þ, the Ej intervals where they are stable and we

indicate whether they are two or three dimensional. Their

interconnections and their role will be described in the following

paragraphs.

There are also several 2D families, which are radial bifurcations

of x1 and thus part of the x1-tree, but play a less important role in

the morphology of the models. They are described in a separate

table (Table 3). The ‘t’ families are related to the 3:1 and the ‘q’ to

the 4:1 radial resonance region.

Besides the orbits related to the x1 family, we find the x2 and x3

families and their 3D relatives as well. They exist for the same

energy intervals as the families of the x1-tree, but their projections

on the equatorial plane are elongated along the minor axis of the

bar. They are described below.

4.2 Families x1, x2 and x3

The characteristics of the x1 and the x2–x3 families in model A1

(Fig. 1) have the typical geometry of the characteristics of 2D

Ferrers bars (Athanassoula 1992a). Owing to the vertical

instabilities, however, x1 becomes unstable over several Ej

Table 2. The families of the x1-tree. The successive columns give the
name of the families, the value of the energy at which they are
introduced ðE*

j Þ, the intervals of Ej at which they are stable and also if
they are 2D or 3D. The ‘bow’ region is explained in the text, while ‘. . .’
after an energy value indicate that a family continues to be stable, but
reaches distances far away from the z ¼ 0 plane.

Family E*
j Stable intervals in Ej 2D/3D

x1 20.495 20.495 , Ej , 20.360 2D
20.343 , Ej , 20.293
20.278 , Ej , 20.244

‘bow’ region 20.222 , Ej , 20.214
20.211 , Ej , 20.205
20.192 , Ej , 20.191
20.186 , Ej , 20.185
20.175 , Ej , 20.173

x1v1 20.360 20.360 , Ej , 20.336 3D
20.253 , Ej , 20.147. . .

x1v2 20.343 always unstable 3D
x1v3 20.293 20.293 , Ej , 20.221 3D
x1v4 20.278 20.224 , Ej , 20.149 3D
x1v5 20.213 20.213 , Ej , 20.172 3D
x1v6 20.211 always unstable 3D
x1v7 20.205 20.205 , Ej , 20.183 3D

20.174 , Ej , 20.170
x1v8 20.192 always unstable 3D
x1v9 20.185 20.185 , Ej , 20.182 3D

Table 3. Radial bifurcations of the x1 family. ‘t’ families are
related to the 3:1 and ‘q’ families to the 4:1 radial resonance
region. Columns are as in Table 2. Ej values are given in
general with three digits, except from the cases where narrow
Ej ranges of existence need more accuracy. We note that the t3
family exists also for lower energies than its E*

j (see Section
4.4).

Family E*
j Stable intervals in Ej 2D/3D

t1 20.244 20.244 , Ej , 20.218 2D
t2 20.214 20.214 , Ej , 20.209, 2D

20.204 , Ej , 20.203
t3 20.205 20.2065 , Ej , 20.2005 2D
q1 20.191 always unstable 2D
q2 20.1857 20.1860 , Ej , 20.1857 2D
q3 20.183 20.1818 , Ej , 20.1808 2D

Figure 1. x1, x2–x3 and the x2mul2 (Ej, x)-characteristics. The curve

corresponding to x2mul2 is the projection of its characteristic on the (Ej, x)

plane. Stable regions are drawn in black and unstable ones in light grey.
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intervals, and not only at the radial 3:1 resonance region, as in the

2D case. In Fig. 1 and in all characteristic diagrams hereafter we

draw the unstable regions in light grey. We observe that the

decreasing part of the x1 curve, below the local maximum at the

radial 4:1 resonance region ðEj < 20:21Þ, is almost everywhere

light grey, indicating that the family is unstable there. The curve at

approximately Ej < 20:17 turns back towards lower energies,

remaining after that continuously unstable. The morphological

evolution of the x1 orbits is that expected from the 2D case and is

given in Fig. 2. The numbers in the upper right-hand corners of the

individual frames correspond to the Ej value of the orbit. The orbits

are chosen along the characteristic curve starting from the lower

values of the Jacobi constant; the orbits in Figs 2(h)–( j) belong to

the decreasing branch. Except for the instability zones related to

the 3:1 resonance all other unstable parts of x1 appear only in the

3D case. As mentioned in Section 2.1, the families introduced at

the instability strips by bifurcation inherit the kind of stability of

the parent family, i.e. of x1. Thus, the instability gaps on the x1

characteristic are covered by the stable orbits of the families born

after the corresponding S ! U transitions. So for almost every

energy Ej there exists a stable orbit of the x1-tree. As we mentioned

in Section 2, the 3D bifurcated families are in general characterized

by four initial conditions ðx0; _x0; z0; _z0Þ so that a (Ej, x0)

characteristic diagram cannot provide all the essential information.

For this reason we prefer to follow the dynamical evolution of the

orbits using stability diagrams. These diagrams frequently become

complicated, but they have the big advantage of giving in a

straightforward way the interconnections of the various families,

and thus becoming a very useful tool in the hunting of periodic

orbits.

The evolution of the stability indices b1 and b2 for x1 are given in

Figs 3–5 for successive energy intervals. The arrows denote

bifurcated families at the bifurcating points and show the direction

of the stability index associated with the S ! U or U ! S

transition. We observe that the variation of the index that in Fig. 3

has the larger values for Ej , 20:38 brings in the system the 3D

families x1v1, x1v2, etc., while the variation of the other index

brings in the families associated with the radial instabilities. The

latter remain on the equatorial plane. The variation of their stability

Figure 2. x1 stable orbits in model A1. The numbers at the upper right-hand corners of the panels indicate their Ej values.

Figure 3. First part of the x1 stability diagram. Arrows denote the

bifurcation of families and the direction in which these evolve.

Figure 4. Second part of the x1 stability diagram. The evolution of the

stability curves in the x1 ‘bow’ is indicated with numbers from 1 to 8 and

arrows. In the diagram we also indicate the x1 bifurcations to the right of the

‘bow’. They are the families t2, x1v5, x1v6 and x1v7.
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indices will, in turn, bring new families because of vertical and

radial instabilities.

The feature depicted in Fig. 4 is typical of the stability diagrams

of many of our models. We call this kind of evolution of the

stability indices a ‘bow’. The b1 and b2 curves do not break

anywhere, but they evolve in a continuous, rather complicated way,

changing direction twice. This ‘bow’ area corresponds to the bend,

or elbow, in the characteristic at approximately Ej < 20:227

(Fig. 1), and the complicated evolution of the stability indices

happens as we move towards lower Ej values along the charac-

teristic curve of x1 at this area. In Fig. 4 one can follow the

evolution of b1 and b2 by following the evolution of both the

numbers and the nearby arrows. The lowest value of the stability

index at ‘5’, not included in the figure (indicated only with a dashed

arrow outside of figure frame), is <255.

A significant change in the way the 3D bifurcations of x1 are

introduced in the system happens at the instability zone found just

beyond the local maximum of the (Ej, x) characteristic close to the

radial 4:1 resonance. As we see in Figs 3–5, the 3D families are

bifurcated at S ! U and U ! S transitions, where the correspond-

ing stability index intersects the b ¼ 22 axis. Moving on the

characteristic towards corotation, before reaching the decreasing

branch, a bifurcating family at an S ! U transition is a stable 3D

family with initial conditions ðx; z; _x; _zÞ ¼ ða; b; 0; 0Þ, where a; b [
R and a; b – 0. On the other hand, the family bifurcated at the

U ! S transition, is (initially) simple unstable and has initial

conditions ðx; z; _x; _zÞ ¼ ðc; 0; 0; dÞ, with c; d [ R and c; d – 0. This

means that the family introduced in the system as stable is a

bifurcation at z, and the simple unstable family a bifurcation at _z:

For the set of families associated with the vertical 5:1 resonance, on

the decreasing branch of the characteristic, this sense of bifurcation

is reversed. Namely we have the bifurcation in z at the U ! S

transition (x1v8) and the bifurcation in _z at S ! U (x1v7).

In Fig. 5 we plot the final part of the stability diagram of the x1

family, corresponding to energies higher than 20.2. As can be seen

from the characteristic diagram of Fig. 1, this includes most of the

decreasing part of the characteristic, the bend at Ej < 20:173 and

the part that goes towards lower energies. This part (roughly for

20:22 , Ej , 20:173Þ, has negative x values starting soon after

the bend. Heavy arrows and numbers in increasing order on and

next to the stability curves in Fig. 5 indicate the evolution of the

indices as we move along this part of the characteristic. As we can

see most parts are unstable, the short stable parts being drawn with

heavy lines. After the turning point, at Ej < 20:173, the upper

curve, moving now towards lower Ej values, is stable until

Ej < 20:181, then has a part with values smaller than 22 and then

re-enters the stability region for Ej < 20:197. The lower stability

curve, however, reaches absolutely large negative values. Thus, the

family is always unstable in the parts where x , 0. It is easy to

understand how the negative x values are introduced by following

the evolution of the x1 orbit morphology as we move along the

characteristic (Fig. 2). As one moves along the decreasing part of

the characteristic (Figs 2h–j), the four apocentra of the orbits

develop loops, the size of which increases strongly as the energy

increases. Already for the orbit in Fig. 2( j) the loops have become

so large, that the sides of the orbit along the bar major axis nearly

touch. As we continue along the characteristic they will touch and

then cross, so that x becomes negative.

Let us now present the evolution of the x2–x3 loop in the 3D

case. As seen in Fig. 1, the situation with the x2–x3 characteristic

is exactly as in 2D. The stability indices also form loops, as the b1

Figure 5. Stability diagram for x1 and bifurcating families corresponding to

the decreasing part of the x1 characteristic. The evolution of the stability

curves is indicated with numbers from 1 to 11, and thick arrows that point to

the direction of the evolution. The bifurcating families and their direction of

evolution are denoted with thin arrows.

Figure 6. Stability diagram for x1, x2 and x3 orbits. In order to follow the

interconnections of the various families, this diagram is given in two parts.

In (a) the stability indices of the families x2 and x3 are emphasized and in

(b) those of x1 and of the bifurcating families. A horizontal segment with

double arrows in the upper part of the diagrams indicates the range of

stability of the family x2mul2. The horizontal segment with double arrows,

drawn dark grey in the lower panel and indicated with D, denotes the

complex unstable part of x1v1.
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and b2 indices of x2 and x3 join each other in pairs (Fig. 6). In 2D

models, the families x1 and x2 are in general the only simple

periodic stable families at the x2–x3 area. This is not necessarily

the case in 3D models. For example, in this model, as we can see in

Fig. 6(b), the 3D family x1v1 has been bifurcated as stable just

before the point Ej ¼ 20:36, while close to Ej ¼ 20:29 the family

x1v3 is introduced in the system. So the situation at the x2–x3 area

is more complicated, since there we have four simple periodic

stable families. Since the x2–x3 stability indices form a bubble

they have no further intersections with the b ¼ 22 axis and there

are no further bifurcations of other simple periodic x2-like

families. Both families, however, have tangencies with the b ¼ 2

axis. At these points, as mentioned in the introduction, families of

the same kind of stability, but with double multiplicity, will be

bifurcated. The one bifurcated from the stable family x2 is

interesting. If we put its x initial values on the characteristic

diagram (Fig. 1), we obtain the extra branch emerging from the

x2–x3 loop, pointed with the curved arrow and characterized as

‘x2mul2’. The energy range over which it is stable is indicated with

a double arrow above the b ¼ 2 axis in Fig. 6(a). Its morphology is

given in Fig. 7. The (x, y) projection is typical of an x2 orbit, the

(x, z) one is a fish-like figure reflecting the double multiplicity of

the family, while the ( y, z) projection offers a shape that could

produce a tiny boxy structure in the central region of the bar (note

the scale on the axes). The (x, z) projection can also offer a boxy

structure, if one considers together with every orbit its reflection

with respect to the z-axis. This, however, is elongated along the

minor axis of the bar as will be discussed in Paper III. The

morphology of this family shows that the model clearly can support

in its face-on projection the presence of stellar rings in the x2–x3

area. This, however, is a thick ring structure extending outside the

equatorial plane.

4.3 The main 3D families

The x1 S ! U transition at approximately Ej < 20:36 (Fig. 6b),

generates the 3D family of periodic orbits x1v1. This family is

related to the presence of the vertical 2:1 resonance. It has a stable

part close to the bifurcating point, then it has a complex unstable

part after an S ! D transition, and becomes stable again at

approximately Ej < 20:253. We have found x1v1 to be stable up

to Ej < 20:147.

The morphological evolution of the family x1v1 is given in

Fig. 8. This family corresponds to the z2 family of Hasan et al.

(1993) and its orbits have been associated with the appearance of

the peanut shaped bulges by Combes et al. (1990). Indeed, owing to

the symmetry of the potential with respect to the equatorial plane,

one can find all 3D families in pairs. Thus for x1v1 we will have the

smile (^) and frown (_) types of the ( y, z) edge-on projections

coexisting at a given energy, and the same holds for the (x, z)

projection. The (x, y) projections of the 3D orbits follow in general

the morphology of the corresponding x1 orbit of the same energy.

As we said in the introduction, the importance of a family of stable

periodic orbits is limited as the individual orbits grow in jzj. The

x1v1 orbit for Ej ¼ 20:2 in Fig. 8(c) exceeds both in its (x, z) and

its ( y, z) projections the height of 2 kpc and this means that it

cannot contribute significantly to the density of the galactic disc. Its

spatial extent, on the other hand, indicates that this orbit could be

used to populate the bulge area.

The U ! S transition at Ej < 20:343 generates the family x1v2

that we followed until Ej < 20:173. It remains totally unstable and

ends after a U ! D ! D sequence. It thus does not play any

important role in the dynamics of the system.

Family x1v3 (Fig. 9) is stable and its orbits keep low-jzj values

roughly in the interval 20:293 , Ej , 20:221. It then ends with

an S ! D transition. This family is similar to the z1 family of

Hasan et al. (1993). We note that both x1v1 and x1v3 provide

useful orbits in the system before their S ! D transition. This

behaviour is also seen in the 3D thick spiral model in Patsis &

Grosbøl (1996). Complex instability helps to introduce abrupt

drops in the density of given features of a model (in our case the

peanut), since it stops abruptly the existence of the family

responsible for their appearance without bringing new stable

families in the system. On the other hand, in cases where a stable

family donates its stability to a bifurcation we have a smooth

morphological evolution, which can give smooth density profiles in

the galaxies. Both x1v1 and x1v3 do not have any intersections or

tangencies with the 22 axis and for this reason they do not

bifurcate other families with the same multiplicity.

The next bifurcated family is x1v4. This is bifurcated from x1

after a U ! S transition. We would thus have expected it to be

unimportant, since its parent family, x1, is unstable at the

bifurcating point. This is the typical behaviour in such cases and

we have seen it happening already for x1v2. x1v4 is introduced at

Figure 7. The 3D x2-like orbit x2mul2. This is a family of multiplicity 2.

Figure 8. Three stable orbits of the x1v1 family. Note that the upper panels

have a different scale from the middle and lower ones. Corotation in model

A1 is at 6.13. The energies from top to bottom are: Ej ¼ 20:35, 20.25 and

20.20, respectively.
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approximately Ej < 20:278. One of the two stability indices, let us

call it b1, remains in the interval 22 , b1 , 2, while the other, b2,

goes to negative values smaller than 22. For larger Ej values,

however, b2 increases and for approximately Ej < 20:224, both

indices come in the stability zone, i.e. we have 22 , b1;2 , 2. The

detailed description of this complicated evolution is beyond

the scope of the present paper and does not add anything to the

important information that the family x1v4 brings stable

representatives in the system for Ej . 20:224. The x1v4 family

remains stable up to Ej < 20:149, where it becomes simple

unstable. Its stability indices fold and the family continues existing

towards smaller energies. The morphological evolution of x1v4

can be seen in Fig. 10. In Fig. 10(a) we give the three projections of

an unstable orbit close to the bifurcating point from which the

family emanates, while in Figs 10(b) and (c) we give two stable

orbits, for energies Ej . 20:224. The final one is for Ej ¼ 20:206

and we see that already the orbit reaches jzj values close to 2 kpc

away from the equatorial plane. For each orbit of this family there

is also a symmetric one with respect to the equatorial plane. If only

one of the two is populated, this would give rise to an asymmetric

warp-like shape. Populating them both of course restores

symmetry. The stable orbits of this family enhance the bar, but

they deviate substantially from the equatorial plane.

4.4 Families at the 3:1 radial resonance

As we have already seen, one of the two stability indices bifurcated

the 3D families x1v1, x1v2, x1v3 and x1v4, by its intersections

with the b ¼ 22 stability axis. The intersections of the second

stability index with this stability axis introduces into the system

planar 2D orbits. The first family is bifurcated after an S ! U

transition at Ej < 20:244, i.e. in the 3:1 resonance region. We call

it t1 and it is stable (Fig. 11). It bridges exactly the instability zone

of x1 in the S ! U ! S transition, i.e. its stability indices together

with those of the x1, form a bubble (Contopoulos 1986). t1 exists

for approximately 20:244 , Ej , 20:218 and at Ej < 20:218

can be considered to be an inverse bifurcation2 of x1. At

Ej < 20:214, just beyond the ‘bow’ area, the same stability index

has another intersection with the b ¼ 22 axis and x1 bifurcates

another 2D family, t2. Several 2D and 3D 3:1 type families, related

to each other and with x1, are introduced in the interval

20:214 , Ej , 20:20. Let us briefly mention that, besides t1 (in

Fig. 11) and t2, we found a third 2D 3:1 family, t3, which is stable

for 20:2065 , Ej , 20:2005, although it is introduced in the

system as being simple unstable for Ej < 20:205. The morphology

of the three 2D families t1, t2 and t3 is given in Fig. 12, and their

stable energy intervals in Table 3. For the lower energies, the t1

orbits have only one loop, which is located on the y-axis, as the

example shown in the left-hand panel of Fig. 12. For higher

energies they develop two more loops, symmetric with respect to

the y-axis, and roughly equal in size to the first one. Since the orbits

of the family t1 are symmetric with respect to the y-axis, for every

orbit we should also have its reflection with respect to the x-axis.

Combining the two, as in the left-hand panel of Fig. 12, we obtain a

shape that is elongated along the bar major axis and resembles the

morphology of the x1 orbits with loops, at least for the energies

where the orbits have only one loop. The extent of such orbits

along the y-axis reaches up to 4 kpc, i.e. two-thirds of the way to

corotation.

t2 brings in the system three-dimensional families of periodic

orbits with stable representatives. It bifurcates the family t2v1 at

Ej < 20:209, which in turn bifurcates t2v1.1 at Ej < 20:205. The

t2v1 family provides stable orbits to the system for 20:209 ,

Ej , 20:207 and the t2v1.1 family for 20:205 , Ej , 20:203.

Triangular-like t2-type orbits have characteristic peaks at the sides

of the bar, such as the peak of the orbits at x < 24 in the (x, y)

Figure 9. Three stable orbits of the x1v3 family. Their (x, z) and (y, z)

projections have always low-jzj values. The energies from top to bottom

are: Ej ¼ 20:28, 20.26 and 20.22, respectively.

Figure 10. Orbits of the family x1v4. Panels (a) show an unstable orbit

close to the bifurcating point at Ej ¼ 20:278. Panels (b) and (c) show stable

orbits for Ej ¼ 20:22 and 20.206, respectively.

2 Inverse bifurcation is a non-linear phenomenon encountered in

Hamiltonian systems, according to which the bifurcated family, instead

of evolving towards the same direction as the parent family, changes

direction. It thus extends for the same energies as the parent family before

the transition and has the same kind of stability as the parent family after the

transition. (Contopoulos 1985).
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projections of Fig. 13. They are near but not always on the minor

axis of the bar and their presence can lead to local enhancements of

the density at the area between the bar and the L4,5 points. For any

energy in the interval 20:214 , Ej , 20:20 there are almost

always stable 3:1-type orbits of one or the other family. Together

with t1, they affect the dynamics of the bar in this region. We note

that the 3:1 orbits bifurcated from x1 are very common in all barred

potentials and have dynamically both in 2D and 3D only local

importance. Orbits of type t2v1 and t2v1.1 have been found even in

the early N-body simulations of 3D bars (fig. 5 in Miller & Smith

1979). The loops of t3 on either side of the major axis of the bar are

not of equal size. As can be seen by careful inspection of the t3

orbit in Fig. 12, the loop on the right-hand side of the major axis is

slightly bigger than the one to the left. Thus, morphologically, t3 is

a kind of asymmetric t1, since for larger energies t1 develops loops

that are symmetric with respect to the major axis, besides the one

along the major axis.

4.5 The final part of the x1-tree

There are two more 3D bifurcations of x1 close to the local

maximum of the characteristic at Ej < 20:205. It is x1v5

(bifurcated at Ej < 20:213 and being stable until Ej < 20:172Þ

and x1v7 (bifurcated at Ej < 20:205, just beyond the peak of the

characteristic). The family x1v7 and its bifurcation x1v7.1 provide

stable orbits for 20:205 , Ej , 20:18 and 20:175 , Ej ,

20:17: Nevertheless, the part of this family that contributes to

the density of the bar is limited by the fast increase of jzj with

energy. Figs 14 and 15 show the morphology of these families.

In the same region we encounter two more 3D bifurcations of x1,

namely the families x1v6, introduced at Ej < 20:211 (Fig. 4), and

x1v8 introduced at Ej < 20:1925 (Fig. 5). Both are born after an

U ! S transition of x1 and always remain unstable. We note that

the representatives of the x1v5, x1v6, x1v7 and x1v8 families are

morphologically similar to those of the Bz2, B_z2; B_z3 and Bz3

families of Pfenniger (1984), respectively.

As we have seen, x1 is mostly unstable in the decreasing branch

beyond the local maximum at the radial 4:1 gap and the

morphology of the orbits at this branch is, in general, rectangular-

like with loops in the corners. There are several families

bifurcating from this branch and their orbits have, as already

noted for other families, a morphology similar to that of x1 in the

region. The 2D families q2 and q3 provide stable asymmetric

Figure 12. Stable orbits of the three two-dimensional families at the 3:1

area. Note that the loops of t3 are asymmetric. In the left-hand panel we plot

a t1 orbit together with its symmetric with respect to the bar minor axis.

Figure 13. Stable orbits of two three-dimensional families at the 3:1 area.

Their names are given on the top left of each sets of panels.

Figure 14. A typical stable x1v5 orbit.

Figure 15. (a) A x1v7 orbit and (b) an x1v7.1 one. Both are stable.

Figure 11. Stability diagram of the t1 family, the first radial bifurcation of

x1 at the 3:1 resonance. The stability indices of x1 are given as well, drawn

with light-grey lines.
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orbits, two examples of which are given in Fig. 16. We also have

one 3D bifurcating family, x1v9, a member of which is shown in

Fig. 16. This family also has an asymmetric stable bifurcation for a

short energy interval. No stable members of these families can be

found outside the interval 20:186 , Ej , 20:1808. To this we

should add the small intervals of stability provided by x1 itself (cf.

Figs 1 and 5).

Finally, for the sake of completeness, in Fig. 17 we give the

morphology of the three 3D families, members of the x1-tree,

which always remain unstable although they exist for large energy

intervals. As we have seen in the corresponding paragraphs they

are the families x1v2, x1v6 and x1v8.

5 F U RT H E R FA M I L I E S

5.1 Orbits around L4 and L5

Another important ‘forest’ of families is the group of the banana-

like orbits. Here we find the usual planar long- and short-period

banana-like orbits (Contopoulos & Grosbøl 1989). The long-period

orbits are coming into the system in a large variety of families, all

of which have stable parts for 20:1984 , Ej , 20:1944. The

stability indices of these orbits exhibit a complicated behaviour

having several tangencies and intersections with the b ¼ 2 and 22

axes. This brings many families in the system by bifurcation. The

family found for lowest Ej values is ban1 (Fig. 18a) which is born

at Ej < 20:1984, followed by ban2 (Figs 18b and c) that appears at

a slightly greater energy value – which in turn bifurcates ban2.1

(Fig. 18d) at Ej < 20:1972 – and ban3 (Figs 18e and f) introduced

in the system at Ej < 20:1983. The most important of the planar

orbits with stable parts, is ban4 (Fig. 18h), because it is stable over

the largest energy interval ð20:1982 , Ej , 20:1955Þ. It exists

for Ej . 20:1982 and it is not bifurcated at this point from any of

the families existing for lower energies (ban1, ban2, ban2.1, ban3,

ban3.1). From ban4 bifurcates the 2D family ban4.1 (Fig. 18g).

The stability indices of ban4 have a complicated behaviour that is

typical of a collision of bifurcations (Contopoulos 1986).3

Approaching Ej ¼ 20:195 503 7765, the ban4 orbits shrink to L4

(or L5), and beyond this point the short-period orbits (spo) grow in

size and take their bean-like shape (Figs 18h and i, respectively).

We have also found three 3D families of periodic orbits with

stable parts. ban3v1 (Fig. 19a), a bifurcation of ban3 at

Ej < 20:1982, is initially marginally stable, having one of its

two stability indices almost equal to 22, but for Ej . 20:1962 the

index become clearly larger than 22. At Ej < 20:1947 the two

indices join each other and we have an S ! D transition. ban4v1

Figure 16. Morphology of stable orbits of the bifurcations of x1 at largest

energy values. Panels (a) and (b) show members of families q2 and q3,

respectively. Panels (c)–(e) show the three views of an orbit of the x1v9

family.

Figure 17. Orbits of the unstable families x1v2 (a), x1v6 (b), and x1v8 (c)

at Ej ¼ 20:2612, 20.178 and 20.184, respectively.

Figure 18. Stable 2D banana-like orbits. Ej is given in the lower left corner

of panels (a)–(g). Panels (h) and (i) include orbits of many Ej values.

Arrows indicate morphological evolution of the same or related families.

3 Collisions of bifurcations happen when both b1 and b2 are exactly equal

to 22 or 2 for a particular set of the control parameters. In order to observe

a collision we need to vary a control parameter of our model continuously

(i.e. to consider successive individual models), and for all of these cases to

follow the evolution of the stability indices as a function of Ej. This means

practically that we vary two parameters. If it happens that b1 ¼ b2 ¼ 22 (or

2) for a critical set of the control parameters, then we will observe a change

in the interconnections between parent and bifurcating families, before and

after the collision. This may also change the general behaviour of the

dynamical system.
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(Fig. 19b), a bifurcation of ban4 at Ej < 20:1976, is almost

everywhere marginally stable in the interval 20:1976 , Ej ,

20:1944: For Ej . 20:1944 it is always complex unstable. ban3v1

and ban4v1 extend to very large Ej values, but as complex unstable.

Since we have S ! D transitions there are no bifurcating families

and this is the mechanism that terminates the trapping of material

around banana-like orbits in our 3D bars. Finally, banv1 (Fig. 19c)

is introduced into the system at Ej < 20:1957 as stable and

remains stable up to Ej < 20:1954. This family is not obviously

related to any other banana-like orbit. Since it is a 3D family we

name it banv1.

5.2 Orbits around L1 and L2

The L1 and L2 Lagrangian points are known to be always unstable

(Binney & Tremaine 1987). Around them we find a family of

planar periodic orbits we call ‘1. It appears for Ej values larger than

that corresponding to L1, the morphology of its orbits resembles

that of the spo orbits rotated by p=2, and their periods are of the

order of the epicyclic period. Close to the L1 energy and for

Ej , 20:168 these orbits are unstable. For Ej . 20:168, however,

‘1 has both stability indices between 22 and 2 and the family

becomes stable. Orbits of this family can be found only by starting

with initial conditions on the major axis of the bar. For this reason

they had not been found previously, since in previous studies

searches for periodic orbits started only with initial conditions on

the y ¼ 0 axis. In Fig. 20, we plot a few stable orbits of ‘1 and their

symmetrics with respect to the x-axis for Ej . 20:168. These

stable orbits do not support the bar since they are elongated parallel

to the minor axis. Nevertheless, they are of physical interest since

they support motion parallel to the minor axis, contribute to the

exchange of material between regions inside and outside corotation

and are able to influence the dynamics in the region between bar

and spirals in barred spiral galaxies. The streaming at the apocentra

of the ‘1 orbits could support arc-like features beyond the end of

the bar.

For larger energies the ‘1 orbits can be observed shifted towards

the x-axis (the minor axis of the bar), at approximately Ej < 20:12

they cross the x-axis and after a short unstable zone they fall on the

retrograde family x4 as stable.

5.3 Orbits outside corotation

Beyond corotation we find the usual planar families (Contopoulos

& Grosbøl 1989). Most of their members display loops. We also

find several 3D families with stable parts. As an example we give

the family depicted in Fig. 21, which is a bifurcation of the planar

family called x1(1) by Contopoulos & Grosbøl (1989). The vertical

extent of the 3D orbits we found beyond corotation is in general

small.

Let us also mention some 2D families, orbits of which are given

in Fig. 22. They have been calculated starting with initial

Figure 19. Stable 3D banana-like orbits. All three extend to large Ej values

but the two most important ones (ban3v1, ban4v1) are complex unstable at

these large Ej values. The numbers at the bottom of the (x, z) projections

give the Ej of each orbit.

Figure 20. Stable orbits of the ‘1 family and their symmetrics with respect

to the x-axis. The innermost orbit, just next to the arrow, corresponds to

Ej < 20:168, just after the U ! S transition.

Figure 21. A 3D stable orbit beyond corotation.

Figure 22. Examples of stable 2D orbits beyond corotation. They support

motion parallel to the minor axis of the bar at the corotation region and

favour exchange of material between regions far from the centre and

regions near to it.

858 Ch. Skokos, P. A. Patsis and E. Athanassoula

q 2002 RAS, MNRAS 333, 847–860



conditions on the major axis of the bar as in the case of the ‘1

family and have thus not been described in previous papers. All of

them have large stable parts. These orbits have two interesting

properties. First, some of them could support motion close to the

end of the bar parallel to its minor axis, at radii shorter than the

corotation radius. Secondly, they could efficiently transport

material from the outer parts of the disc, e.g. from a distance

close to 20 kpc from the centre, to the central regions of the bar

(e.g. Fig. 22a). This is particularly true for orbits such as those

shown in Figs 22(a) and (c).

6 C O N C L U S I O N S

In this paper we have made an extensive study of both the 2D and

3D periodic orbits in a fiducial model representative of a barred

galaxy. We report on the stability and morphology of the main

families. Our main conclusions are.

(i) So far the x1 orbits have been considered the backbone of the

bars. This, however, can only be the case for 2D bars, since the x1

can only populate the z ¼ 0 plane. For 3D bars the backbone is x1,

together with the tree of its 3D bifurcating families. Trapping

around these families will determine the thickness and the vertical

shape of galaxies in and around the bar region. Major building

blocks for the 3D bars can also be supplied by families initially

introduced as unstable. Thus the family x1v4, introduced in the

system after a U ! S transition, is a basic family, giving stable

representatives for large energy intervals in the system.

(ii) The (x, y) projections of the 3D families of the x1-tree, in

general, retain a morphological similarity with their parent family

at the same energy. This has important implications for the

morphology of a galaxy since it introduces building blocks that

have a similar morphology to the x1 orbits, but have considerable

vertical extensions. In particular, at the regions close to the

bifurcating points the (x, y) morphology of an x1vn family is not

only geometrically similar, but actually very close to the

morphology of the corresponding x1 orbit.

(iii) The way the 3D families of the x1-tree are introduced in

the system at an instability strip determines the importance of the

bifurcations in z or _z: Particularly, in the present model, all 3D

families of the x1-tree at the increasing part of the characteristic

that are bifurcated in z are introduced in the system as stable. On

the other hand, the stable family associated with the 5:1 vertical

resonance (x1v7), bifurcated at the decreasing part of the x1

characteristic, beyond its local maximum, is bifurcated in _z:

Whether the stable family of the final S ! U ! S transition is the

bifurcation in z or _z determines to a large degree the morphology of

the model at its outer parts.

(iv) The radial 3:1 resonance region provides in the system

several 2D and 3D stable families. Their role, however, is confined

locally, as in 2D models.

(v) 3D orbits elongated along the minor axis of the bar can be

given by bifurcations of the planar x2 family.

(vi) We have found several families of 3D banana-like orbits

around L4,5. Their extent is always restricted by an S ! D

transition.

(vii) Stable families found beyond corotation circulate material

between the outer parts of the system and regions as far inwards as

1 kpc. This contributes to the mixing of the elements in a disc

galaxy.

The families of periodic orbits we have described up to now are

indeed the basic families of a 3D Ferrers bar. As we explore the

parameter space, however, their properties change, while new

important families may appear and play a crucial role. A notable

example is z3.1s, a family related to the z-axis orbits along the

rotational axis, which will be described in Paper II. However, these

are rather particular cases and are not encountered in every model.
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